Allylation of Azoles with Allyltributyltin via Unstable N-(Alkoxycarbonyl)azolium Salts

Takashi Itoh, Hiroshi Hasegawa, Kazuhiro Nagata, and Akio Ohsawa*

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

Received August 24, 1993®

The one-pot reactions of imidazoles with allyltributyltin in the presence of alkyl chloroformates gave 2-allyl-1,3-bis(alkoxycarbonyl)-4-imidazolines in good yields. The reactions of thiazoles and oxazoles also proceeded in a similar manner. The instability of the intermediary quaternary salts required the nucleophiles to be added simultaneously with the chloroformate. Therefore, the reaction was specific for allyltributyltin, since it doesn't react with the carbonyl group of chloroformates. The dihydro allyl adducts thus obtained were aromatized with potassium ferricyanide under basic conditions to afford the corresponding 2-allylazoles.

Imidazoles and their derivatives are ubiquitous, occurring in drugs,¹ ligands,² and natural products.³ There has also been widespread interest in their chemistry,⁴ although many simple imidazoles are not readily available. The 2-lithiated imidazoles have been used for the synthesis of 2-substituted imidazoles.⁵ but carbon electrophiles have not been introduced. Nucleophilic reactions of imidazoles with no electron-withdrawing groups have been performed by the activation of imidazole rings by quaternization.⁶ The activation by an acyl halide or alkyl chloroformate with base resulted in ring opening, 7 1,2-diacylation, 8 or dimerization.⁹ depending on the reaction conditions. Recently, a Reissert-type reaction of benzimidazole was used to introduce a cyano group at the C-2 position.¹⁰ However, the attempted aromatization resulted in retro-Reissert reaction, which gave only starting material.¹¹ In the last few years, we have been studying the reactivities of heteroaromatic quaternary salts toward nucleophiles.¹² and we have focused on the lability of 1,3-bis(alkoxycarbonyl)imidazolium salts, which react with imidazoles to afford dimeric compounds. The difficulty of the isolation prompted us to trap them in situ. Tin reagents were thought to be logical candidates because they don't react with carbonyl groups in the absence of a Lewis acid.¹³ The use of a tin reagent resulted in one-pot syntheses of 2-allyl1,3-bis(alkoxycarbonyl)-4-imidazolines in good yields.¹⁴ Moreover, the adducts thus obtained could be aromatized under basic conditions to afford 2-allylimidazoles, which are rarely synthesized by other methods. The above procedure was applied to thiazoles and oxazoles, and satisfactory results were obtained. This paper describes these results.

Results and Discussion

Reactions of Imidazoles with Allyltributyltin in the Presence of Alkyl Chloroformate. Imidazole 1a dimerized to triethyl 2,2'-bis-1H-imidazole-1,1',3(2H)tricarboxylate (3a) in the presence of ethyl chloroformate and triethylamine. When ethyl chloroformate was added dropwise to a mixture of imidazole, allyltributyltin, and triethylamine, 2-allyl-1,3-bis(ethoxycarbonyl)-4-imidazoline (2a) was obtained in 96% yield (Scheme 1). The application of the latter reaction conditions to imidazoles 1a-c (Scheme 2) gave imidazolines 2a-2c' (see Table 1, entries 1–8). Generally, the nature of the alkyl group of the chloroformate had little effect on the yield of 2.15

Next, benzimidazoles 4a-g were allowed to react under the same conditions, and the results are summarized in Scheme 3 and Table 2 (entries 1-12). The reaction rates for the benzimidazoles were slower than those of the imidazoles (Table 1), but the yields were good for substrates 4a-d. Although electron-withdrawing substituents on the benzo ring lowered the yields (entries 7, 9, and 11), the use of a more electron-deficient chloroformate improved them (entries 8, 10, and 12).

Reactions of Thiazoles and Oxazoles with Allyltributyltin. Although the reactions of thiazoles with organometallic reagents have been widely investigated, the substrates have been limited to benzo-fused thiazoles.¹⁶ Moreover, there are few papers that have reported the allylation of thiazole derivatives. It has been shown that allylmagnesium halide reacts with benzothiazole to afford

Abstract published in Advance ACS Abstracts, February 15, 1994. (1) Kudzma, L. V.; Turnbull, S. P. Synthesis 1990, 1021, and references cited therein.

⁽²⁾ Collman, J. P.; Hutchison, J. E.; Lopez, M. A.; Guilard, R. J. Am. Chem. Soc. 1992, 114, 8066, and references cited therein.

⁽³⁾ Kim, T. H.; Rapoport, H. J. Org. Chem. 1990, 55, 3699, and references cited therein.

⁽⁴⁾ Grimmett, M. R. Advances in Imidazole Chemistry. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1980; Vol. 27, pp 242-326.

⁽⁵⁾ Iddon, B. Heterocycles 1985, 23, 417.

⁽⁶⁾ Begtrup, M. Angew. Chem. Int. Ed. Engl. 1974, 13, 347.

 ⁽⁷⁾ Grimmett, M. R. In Comprehensive Organic Chemistry; Sammes,
 P. G., Ed.; Pergamon Press: Oxford, 1979; Vol. 4, pp 381-382.

⁽⁸⁾ Bastiaansen, J. A. M. Synthesis 1978, 633.
(9) Regel, E. Liebigs Ann. Chem. 1977, 159.
(10) (a) Uff, B. C.; Burford, D. L. W.; Ho, Y.-P. J. Chem. Res. (S) 1989, 386. (b) Jois, Y. H. R.; Gibson, H. W. J. Org. Chem. 1991, 56, 865. (c) Jois, Y. H. R.; Berg, M. A. G.; Merola, J. S.; Gibson, H. W. Tetrahedron Lett 1901, 2007. Lett. 1991, 2997.

⁽¹¹⁾ Uff, B. C.; Ho, Y.-P.; Burford, D. L. W.; Popp, F. D. J. Heterocycl. Chem. 1987, 24, 1349.

^{(12) (}a) Itoh, T.; Nagata, K.; Okada, M.; Ohsawa, A. Tetrahedron Lett. 1990, 7193. (b) Ibid. 1992, 361. (c) Ibid. 1992, 6983. (d) Idem. Chem.

Pharm. Bull. 1992, 40, 2283. (e) Idem. Tetrahedron 1993, 49, 4859. (13) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis;

Butterworth: London, 1987.

⁽¹⁴⁾ Preliminary communication, Itoh, T.; Hasegawa, H.; Nagata, K.; Okada, M.; Ohsawa, A. Tetrahedron Lett. 1992, 5399.

⁽¹⁵⁾ In most cases, ethyl and 1-chloroethyl chloroformates were used because the former is the most inexpensive and general one and the latter afforded the best results for the aromatization process.

^{(16) (}a) Aresta, M.; Ciminale, F. J. Chem. Soc. Dalton Trans. 1981, 1520. (b) Babudri, F.; Florio, S.; Ronzini, L.; Aresta, M. Tetrahedron 1983, 39, 1515. (c) Takei, H.; Miura, M.; Sagimura, H.; Okamura, H. Chem. Lett. 1979, 1447. (d) Corey, E. J.; Boger, D. L. Tetrahedron Lett. 1978. 9.

^a (a) ClCO₂Et (2.4 equiv), Et₃N (1.1 equiv), CH₂Cl₂, rt, 20 h; (b) Bu₃SnCH₂CH=CH₂ ($\overline{1.2}$ equiv), ClCO₂Et (2.4 equiv), Et₃N (1.1 equiv), CH₂Cl₂, 0 °C, 1 h.

ring-opened products,¹⁷ whereas 2-alkylbenzothiazole gives 2,2-diallylbenzothiazolines.¹⁸ 2-Allyl derivatives are also obtained when 2-halobenzothiazoles are allowed to react with allyl Grignard reagents.¹⁹ Thiazolium salts have attracted much attention because of the relationship to the reactivity of the thiamine active site.²⁰ They have highly acidic C-2 protons, and therefore, their reactions with carbanions have been limited to those of 2-methylbenzothiazolium salts with organometallics.²¹

Because thiazoles don't form stable quaternary salts with chloroformate,²² we expected that our procedure would be successful for thiazoles. The reaction conditions described above were applied to thiazoles 1d-g and oxazole 1h. At first, thiazoles 1d-g were allowed to react with allyltributyltin in the presence of alkyl chloroformate to afford 2-allyl-1-(alkoxycarbonyl)-4-thiazolines 2d-g' (Table 1, entries 9-16). The reaction was also applied to oxazole 1h to give 2-allyl-4-oxazoline 2h', although the weak basicity of 1h required that 1-chloroethyl chloroformate be used to form the quaternary salt (Table 1, entries 17 and 18). Benzothiazoles 4h-j and benzoxazole 4k also underwent the reaction in the same manner to afford the corresponding products 5h-j and 5k (Table 2, entries 13-21).

Aromatization of the Dihydro Adducts. To the best of our knowledge, the synthesis of monocyclic 2-allylimidazole has been reported in only one paper.²³ Since the method involves the thermal rearrangement of 1-allylimidazole at 530 °C to give a mixture of 2- and 4-allylimidazole, it cannot be regarded as a general one. Our facile synthesis of imidazolines 2 prompted us to attempt the synthesis of allylimidazoles. We found that 2a' was readily aromatized to 2-allylimidazole 6a in 78% yield with basic aqueous potassium ferricyanide under reflux for 1 h. Under the same conditions, however, benzimidazoline 5a' afforded 2-(1-propenyl)benzimidazole 8a, probably through thermal isomerization of 2-allylbenzimidazole 7a.24 The conversion of 5a' to 7a was achieved in 74% yield with

excess reagents at room temperature. Compound 7a thus obtained was easily isomerized to 8a on heating. The thermal instability of 7 suggests that this method is superior to others that have been reported.^{22,23} The reaction was thought to proceed by the initial hydrolysis of the carbamate followed by oxidation of the unstable 2-allyl-4-imidazoline. Similar conditions caused aromatization to occur in the case of thiazoline derivatives but resulted in decomposition of oxazoline. When benzothiazoline 5h' was a substrate, 2-allylbenzothiazoline 9h was isolated as an intermediate. The results are summarized in Scheme 4 and Table 3.

The reaction scheme is shown with imidazole 1a as an example (Scheme 5). First, imidazole 1 is transformed to bis(alkoxycarbonyl)imidazolium salt 10, which, in the absence of tin reagent, reacts with a second imidazole to afford dimer 3. In the presence of allyltributyltin, quaternary salt 10 is effectively trapped by allyltributyltin to form 2. The aromatization is believed to proceed via initial hydrolysis of the ester to give an allylimidazoline, which is oxidized by potassium ferricyanide to allylimidazole. In the case of thiazoline 5h, the assumption that the hydrolysis occurs first is supported by the fact that 2-allylbenzothiazoline 9h was isolated.

In conclusion, allyltributyltin has been shown to trap unstable (alkoxycarbonyl)azolium salts to give allyl adducts, which can be aromatized to allylheteroazoles. The application of this process to other tin reagents and heteroaromatics is now in progress.

Experimental Section

Melting points are uncorrected. ¹H- and ¹³C-NMR spectra were recorded at 400 and 100 MHz, respectively, with TMS as an internal standard. Mass spectra and high-resolution mass spectra (HRMS) were measured at 70 eV.

General Procedure for the Reaction of Imidazoles 1a-c, 4a-g with Allyltributyltin. An imidazole (10 mmol), allyltributyltin (12 mmol), and triethylamine (11 mmol) were dissolved in 40 mL of CH₂Cl₂, and the mixture was cooled in an ice bath. 1-Chloroethyl chloroformate (24 mmol) was added dropwise to the mixture, and the solution was allowed to stir at 0 °C for 1 h to 3 d depending on the reaction rate. The reaction mixture was treated with 1 M KF (30 mL) and ether (100 mL), and the precipitate thus formed was removed by filtration. The filtrate was dried over MgSO4 and evaporated to leave a residue, which was chromatographed on silica gel to afford a 2-allyl-1,3-bis[(1chloroethoxy)carbonyl]-4-imidazoline.

Reactions of Thiazoles and Oxazoles with Allyltributyltin. The procedure was similar to that described above, except that triethylamine was omitted and only 12 mmol of alkyl chloroformate was required for complete reaction. All allyl adducts were obtained as mixtures of conformational isomers. Thus, the NMR spectra of the N-ethoxycarbonyl derivatives were measured in DMSO at 80 °C so that the conformers freely interconverted, and this procedure resulted in simplified data. N-[(1-Chloroethoxy)carbonyl]azolium salts, however, decomposed on heating to N-(1-methyl-3-butenyl) derivatives;²⁵ therefore, the spectra of these compounds were measured at rt as mixtures of conformational isomers.

2-Allyl-1,3-bis(ethoxycarbonyl)-4-imidazoline (2a): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.23 (6H, t, J = 7.0 Hz),

⁽¹⁷⁾ Babudri, F.; Bartoli, G.; Ciminale, F.; Florio, S.; Ingrosso, G. (17) Babudri, T.; Babudri, G.; G. S.; Inguscio, G. Synthesis 1985, 522.
(18) Babudri, F.; Florio, S.; Inguscio, G. Synthesis 1985, 522.
(19) Florio, S.; Epifani, E.; Ingrosso, G. Tetrahedron 1984, 40, 4527.
(20) Bordwell, F. G.; Satish, A. V. J. Am. Chem. Soc. 1991, 113, 985,

and references cited therein. (21) Akiba, K.; Ohara, Y.; Hisaoka, M.; Inamoto, N. Heterocycles 1975,

^{3, 567}

⁽²²⁾ Dondoni, A.; Dall'Occo, T.; Fantin, G.; Fogagnolo, M.; Medici, A. Tetrahedron Lett. 1992, 5399.

⁽²³⁾ Begg, C. G.; Grimmett, M. R.; Wethey, P. D. Aust. J. Chem. 1973, 26. 2435.

⁽²⁴⁾ It was reported that 2-allylbenzimidazole 7a was obtained in 23% yield from the condensation of o-phenylenediamine and vinylacetic acid in refluxing 4 N HCl for 1 h. The authors claimed that 7a isomerized to Sa in refluxing benzene, but not under the above conditions. See, Raines, S.; Kovacs, C. A. J. Heterocycl. Chem. 1967, 4, 305.

⁽²⁵⁾ For example, compound 5h was transformed quantiatively to 3-(1methyl-3-butenyl)benzothiazolium salt in chloroform when heated at 70 °C for 1 h. Imidazoline 2a' gave 1-(1-methyl-3-butenyl)imidazole in a quantative yield under the same conditions.

Table 1. Reactions of Azoles with Allyltributyltin in the Presence of Alkyl Chloroformate

entry	substrate	X	X′	R1	\mathbb{R}^2	R	conditions	product	yield (%)
1	la	NH	NCO ₂ R	Н	Н	Et	0 °C, 1 h	28	96
2	1 a	NH	NCO ₂ R	н	Н	CHClMe	0 °C, 2 h	2a′	80
3	1 a	NH	NCO ₂ R	н	н	CH ₂ CCl ₃	0°C, 1h	2a″	78
4	1 a	NH	NCO_2R	н	н	Me	0 °C, 1.5 h	2a'''	63
5	1 b	NH	NCO ₂ R	Me	Н	\mathbf{Et}	0 °C, 1.5 h	2b	90
6	1 b	NH	NCO_2R	Me	н	CHClMe	0 °C, 2 h	2b′	82
7	1 c	NH	NCO ₂ R	Me	Me	Et	0 °C, 2 h	2c	69
8	1 c	NH	NCO ₂ R	Me	Me	CHClMe	0 °C, 1.5 h	2c′	77
9	1 d	S	S	н	н	Et	0 °C, 3 h to rt, 2 h	2d	61
10	1 d	S	S	н	н	CHClMe	0 °C, 2 h	2ď′	81
11	1e	S	S	н	Me	\mathbf{Et}	rt, 6 h	2e	33
12	1e	S	S	н	Me	CHClMe	0 °C, 2 h	2e′	87
13	1 f	S	S	Me	н	\mathbf{Et}	rt, 3 h	2f	63
14	1 f	s	S	Me	н	CHClMe	0 °C, 2 h	2f′	78
15	1g	s	S	Me	Me	\mathbf{Et}	rt, 3 h	2g	54
16	1 g	S	S	Me	Me	CHClMe	0 °C, 2 h	2g'	77
17	1 ĥ	0	0	н	н	\mathbf{Et}	rt, 24 h	2 h	0
18	1 h	0	0	Н	Н	CHClMe	rt, 4 h	2h′	75

Scheme 3

2.62 (2H, dd, J = 3.7 Hz, 7.0 Hz), 4.13 (4H, q, J = 7.0 Hz), 5.03– 5.05 (1H, m), 5.08 (1H, s), 5.67–5.78 (1H, m), 5.80 (1H, t, J = 3.7 Hz), 6.24 (2H, s); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.3 (2CH₃), 36.6 (CH₂), 61.5 (2CH₂), 72.5 (CH), 113.2 (2CH), 119.0 (CH₂), 131.0 (CH), 150.3 (2CO); HRMS m/z (M⁺, 7%) calcd for C₁₂H₁₈N₂O₄ 254.1273, obsd 254.1270; (M⁺ – allyl, 100%) calcd for C₉H₁₃N₂O₄ 213.0814, obsd 213.0844.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-4-imidazoline (2a'): colorless oil; ¹H NMR (CDCl₃) δ 1.85 (6H, d, J = 5.9 Hz), 2.70–2.86 (2H, m), 5.09–5.24 (2H, m), 5.56–6.07 (2H, m), 6.22–6.41 (2H, m), 6.62 (2H, q, J = 5.9 Hz). The ¹³C NMR spectrum was recorded on a mixture of at least four conformers; ¹³C NMR (CDCl₃) δ 25.3 (2 peaks), 25.4 (CH₃), 35.1, 35.2, 36.7, 36.8 (CH₂), 73.1, 73.2, 73.3, 73.7 (CH), 82.8, 82.9 (2CH), 113.0, 113.6, 113.9 (2CH), 120.4, 120.9 (CH₂), 129.2, 129.5, 129.7 (CH), 147.5, 147.6, 147.8 (2CO); HRMS m/z (M⁺, 8%) calcd for C₁₂H₁₆-Cl₂N₂O₄ 322.0487, obsd 322.0503; (M⁺ – allyl, 100%) calcd for C₉H₁₁Cl₂N₂O₄ 281.0100, obsd 281.0124.

2-Allyl-1,3-bis[(2,2,2-trichloroethoxy)carbonyl]-4-imidazoline (2a"): colorless needles from EtOH; mp 98–98.5 °C; ¹H NMR (DMSO- d_6 , 80 °C) δ 2.77 (2H, dd, J = 3.4 Hz, 7.3 Hz), 4.91 (4H, bs), 5.10 (1H, s), 5.14 (1H, d, J = 5.4 Hz), 5.70–5.80 (1H, m), 5.98 (1H, bs), 6.41 (2H, s); ¹³C NMR (DMSO- d_6 , 80 °C) δ 35.9 (CH₂), 73.0 (CH), 74.5 (2CH₂), 95.5 (2CCl₃), 113.9 (2CH), 119.9 (CH₂), 130.0 (CH), 148.2 (2CO). Anal. Calcd for C₁₂H₁₂Cl₆N₂O₄: C, 31.26; H, 2.62; N, 6.07. Found: C, 31.21; H, 2.52; N, 6.09.

2-Allyl-1,3-bis(methoxycarbonyl)-4-imidazoline (2a^{'''}): colorless needles from hexane; mp 45.5–46 °C; ¹H NMR (DMSO- d_6 , 80 °C) δ 2.61 (2H, dd, J = 3.7 Hz, 7.0 Hz), 3.69 (6H, s), 5.04 (1H, d, J = 4.4 Hz), 5.07 (1H, s), 5.66–5.77 (1H, m), 5.80 (1H, t, J = 3.7 Hz), 6.24 (2H, s); ¹³C NMR (DMSO- d_6 , 80 °C) δ 36.5 (CH₂), 52.6 (2CH₃), 72.6 (CH), 113.2 (2CH), 119.0 (CH₂), 130.9 (CH), 150.8 (2CO). Anal. Calcd for C₁₀H₁₄N₂O₄: C, 53.09; H, 6.24; N, 12.38. Found: C, 52.71; H, 6.19; N, 12.36.

2-Allyl-1,3-bis(ethoxycarbonyl)-4-methyl-4-imidazoline (**2b**): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.21 (3H, t, J = 6.8 Hz), 1.23 (3H, t, J = 6.8 Hz), 2.01 (3H, d, J = 1.5 Hz), 2.52–2.54 (2H, m), 4.12 (2H, q, J = 6.8 Hz), 4.13 (2H, q, J = 6.8 Hz), 5.02–5.04 (1H, m), 5.06 (1H, bs), 5.67–5.77 (1H, m), 5.80 (1H, t, J = 3.9 Hz), 6.11 (1H, d, J = 1.5 Hz); ¹³C NMR (DMSO- d_6 , 80 °C) δ 12.3 (CH₃), 14.2 (CH₃), 14.3 (CH₃), 37.1 (CH₂), 61.2 (2CH₂), 73.7 (CH), 111.0 (CH), 118.6 (CH₂), 123.3 (C), 131.3 (CH), 150.1 (CO), 151.3 (CO); HRMS m/z (M⁺, 8%) calcd for C₁₀H₁₆N₂O₄ 268.1415, obsd 268.1418; (M⁺ – allyl, 100%) calcd for C₁₀H₁₆N₂O₄ 227.1029, obsd 227.1021.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-4-methyl-4-imidazoline (2b'): colorless viscous oil; ¹H NMR (CDCl₃) δ 1.84 (6H, d, J = 5.7 Hz), 2.10 (3H, s), 2.64 (2H, bs), 5.05–5.22 (2H, m), 5.51–6.03 (3H, m), 6.58 (2H, q, J = 5.7 Hz). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 12.3, 13.4 (CH₃), 25.2, 25.3 (2CH₃), 37.1, 38.3 (CH₂), 74.2 (CH), 82.6, 82.8, 82.9 (2CH), 111.1, 111.8 (CH), 119.8, 119.9, 120.1, 120.3 (CH₂), 125.2 (C), 129.6, 129.8, 130.1 (CH), 147.3, 147.4 (2CO). HRMS m/z (M⁺, 10%) calcd for C₁₈H₁₈-Cl₂N₂O₄ 336.0641, obsd 336.0638; (M⁺ – allyl, 100%) calcd for C₁₀H₁₈Cl₂N₂O₄ 295.0250, obsd 295.0232.

2-Allyl-1,3-bis(ethoxycarbonyl)-4,5-dimethyl-4-imidazoline (2c): colorless oil; ¹H NMR (DMSO- d_{6} , 80 °C) δ 1.22 (6H, t, J = 7.0 Hz), 1.96 (6H, s), 2.40 (2H, dd, J = 4.4 Hz, 7.3 Hz), 4.11 (4H, q, J = 7.0 Hz), 5.00 (1H, bs), 5.03–5.05 (1H, m), 5.62–5.73 (1H, m), 5.77 (1H, t, J = 4.4 Hz); ¹³C NMR (DMSO- d_{6} , 80 °C) δ 11.2 (2CH₃), 14.2 (2CH₃), 37.8 (CH₂), 61.1 (2CH₂), 73.5 (CH), 118.1 (CH₂), 119.5 (2C), 131.5 (CH), 151.5 (2CO); HRMS m/z(M⁺, 11%) calcd for C₁₁H₁₂N₂O₄ 282.1577, obsd 282.1577; (M⁺ – allyl, 100%) calcd for C₁₁H₁₇N₂O₄ 241.1189, obsd 241.1192.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-4,5-dimethyl-4-imidazoline (2c'): colorless viscous oil; ¹H NMR (CDCl₃) δ 1.84 (6H, d, J = 5.9 Hz), 2.05 (6H, s), 2.56 (2H, bs), 5.02–5.23 (2H, m), 5.49–5.98 (2H, m), 6.60 (2H, q, J = 5.9 Hz). The ¹³C NMR spectrum was recorded on a mixture of two conformers: ¹³C NMR (CDCl₃) δ 11.2, 12.1 (2CH₃), 25.3, 25.4 (2CH₃), 37.5, 38.0 (CH₂), 74.0 (CH), 82.6 (2CH), 119.3, 119.5 (CH₂), 121.2 (2C), 130.0, 130.2 (CH), 148.2, 149.1 (2CO); HRMS m/z (M⁺, 12%) calcd for C₁₄H₂₀-Cl₂N₂O₄ 350.0779, obsd 350.0779; (M⁺ – allyl, 100%) calcd for C₁₁H₁₅Cl₂N₂O₄ 309.0372, obsd 309.0389.

2-Allyl-3-(ethoxycarbonyl)-4-thiazoline (2d): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.23 (3H, t, J = 7.0 Hz), 2.46–2.56 (2H, m), 4.15 (2H, q, J = 7.0 Hz), 5.07–5.10 (1H, m), 5.11–5.13 (1H, m), 5.59 (1H, dd, J = 4.6 Hz, 7.0 Hz), 5.75 (1H, d, J = 4.6 Hz), 5.73–5.84 (1H, m), 6.41 (1H, d, J = 4.6 Hz); ¹³C NMR (DMSO d_6 , 80 °C) δ 14.2 (CH₃), 40.8 (CH₂), 61.7 (CH₂), 63.8 (CH), 103.8 (CH), 118.6 (CH₂), 121.5 (CH), 132.4 (CH), 152.0 (CO). HRMS m/z (M⁺, 45%) calcd for C₆H₁₈NO₂S 158.0276, obsd 158.0284.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-4-thiazoline (2d'): colorless oil; ¹H NMR (CDCl₃) δ 1.85 (3H, d, J = 5.9 Hz), 2.62 (2H, t, J = 6.6 Hz), 5.10–5.23 (2H, m), 5.44–6.02 (3H, m), 6.36– 6.66 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 25.3 (2 peaks), 25.4, 25.5 (CH₃), 40.5, 40.7, 41.8 (CH₂), 63.7 (2 peaks), 64.9, 65.0 (CH), 82.9 (2 peaks), 83.0 (CH), 105.5, 105.8 (CH), 119.5, 119.6, 119.7, 119.9 (CH₂), 120.2 (2 peaks), 121.3, 121.5 (CH), 131.4, 131.5, 131.6, 131.7 (CH), 149.6, 149.7, 149.9 (CO); HRMS m/z (M⁺, 40%) calcd for C₉H₁₂ClNO₂S 233.0275, obsd 233.0269; (M⁺ – allyl, 100%) calcd for C₉H₇ClNO₂S 191.9887, obsd 191.9888.

2-Allyl-3-(ethoxycarbonyl)-4-methyl-4-thiazoline (2e): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.23 (3H, t, J = 7.3 Hz), 2.06 (3H, d, J = 1.4 Hz), 2.46–2.49 (2H, m), 4.13 (2H, q, J = 7.3 Hz), 5.06–5.11 (2H, m), 5.53 (1H, d, J = 1.4 Hz), 5.60 (1H, t, J = 5.6 Hz), 5.72–5.81 (1H, m); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.1 (CH₃), 16.2 (CH₃), 41.2 (CH₂), 61.4 (CH₂), 65.7 (CH), 102.9 (CH), 118.2 (CH₂), 131.4 (C), 132.6 (CH), 152.9 (CO). HRMS m/z (M⁺,

substrate

4a

4a

4b

4c

4c

4d

4e

4e

4f

4f

4g

4g 4h

4h

4i

4i

4j 4j

4k

entry

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Table 2. React

Н

н

н

Н

Н

Н

Η

Н

н

н

Η

Н

H

ions of Benzo-Fused Azoles with Allyltributyltin in the Presence of Alkyl Chloroformate							
X	X'	\mathbb{R}^1	\mathbb{R}^2	R	conditions	product	yield (%)
NH	NCO ₂ R	н	Н	Et	rt, 3 h	5a	70
NH	NCO ₂ R	н	н	CHClMe	0 °C to rt, 2 h	5 a ′	69
NH	$NCO_{2}R$	Me	н	Et	rt. 3 h	5b	83
NH	$NCO_{2}R$	Me	Me	Et	rt. 15 h	5c	84
NH	NCO ₂ R	Me	Me	CHCIMe	0°C to rt. 3 h	5c'	96
NH	NCO ₂ R	OMe	H	Et	rt. 15 h	5d	81
NH	NCO ₂ R	Cl	н	Et	rt. 3 days	5e	39
NH	NCO.R	ČĪ	ਸ	CHCIM	0°C to rt 2h	50'	94

 \mathbf{Et}

 $\mathbf{E}\mathbf{t}$

Et

 \mathbf{Et}

 \mathbf{Et}

 \mathbf{Et}

CHClMe

CHClMe

CHClMe

CHClMe

CHClMe

CHClMe

CH₂CCl₃

NCO₂R

NCO₂R

NCO₂R

NCO₂R

 \mathbf{s}

SSSSS0

CO₂Me

CO₂Me

 NO_2

NO₂

OMe

OMe

 NO_2

 NO_2

н

н

Η

NH

NH

NH

NH

555555

Table 3. Aromatization of Allyl Adducts 2' and 5'

entry	substrate	conditions	yield of $6 \text{ or } 7(\%)$
1	2a′	KOH (3 equiv), $K_3Fe(CN)_6$ (6 equiv), H ₂ O-dioxane, reflux, 1 h	78 (6a)
2	2b′	a	57 (6b)
3	2e′	a	42 (6c)
4	2f″	KOH (1.5 equiv), K ₃ Fe(CN) ₆ (3 equiv), H ₂ O-THF, reflux, 3 h	60 (6f)
5	5 a ′	KOH (16 equiv), K ₃ Fe(CN) ₆ (12 equiv), H ₂ O-dioxane, rt, 5 days	74 (7a)
6	5 h ′	KOH (1.5 equiv), $K_3Fe(CN)_6$ (3 equiv), H ₂ O-dioxane, reflux, 3 h	61 (7 h)

^a Same as above.

35%) calcd for C₁₀H₁₅NO₂S 213.0824, obsd 213.0832; (M⁺ – allyl, 100%) calcd for C₇H₁₀NO₂S 172.0433, obsd 172.0455.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-4-methyl-4-thiazoline (2e'): colorless oil; ¹H NMR (CDCl₃) δ 1.84 (3H, d, J = 5.7 Hz), 2.15 (3H, d, J = 0.9 Hz), 2.54 (2H, t, J = 6.6 Hz), 5.06-5.33 (3H, m), 5.60–5.97 (2H, m), 6.58 (1H, q, J = 5.7 Hz). The ¹³C NMR spectrum was recorded on a mixture of three conformers: ¹³C NMR (CDCl₃) δ 16.6 (CH₃), 25.3 (2 peaks), 25.40 (CH₃), 41.3, 41.4, 41.6 (CH₂), 65.6, 66.5 (CH), 82.7, 82.9 (CH), 103.4, 104.0, 104.6 (CH), 119.1, 119.2 (CH₂), 131.9 (2 peaks) (CH), 132.3, 132.4 (C), 150.3, 150.4 (CO); HRMS m/z (M⁺, 49%) calcd for C₁₀H₁₄-ClNO₂S 247.0431, obsd 247.0435; (M⁺ - allyl, 100%) calcd for C₇H₉ClNO₂S 206.0043, obsd 206.0068.

2-Allyl-3-(ethoxycarbonyl)-5-methyl-4-thiazoline (2f): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.22 (3H, t, J = 7.3 Hz), Scheme 5

rt, 3 days

rt, 3 days

rt, 3.5 h

rt, 20 h

rt, 20 h

rt. 3 h

0°C, 3h

rt, 6 days

rt, 36 h

rt, 24 h

0°C, 1.5 h

0 °C to rt, 2 h

0 °C to rt, 7 h

1.86 (3H, d, J = 1.5 Hz), 2.48–2.55 (2H, m), 4.13 (2H, q, J = 7.3Hz), 5.07-5.12 (2H, m), 5.55 (1H, dd, J = 4.9 Hz, 6.8 Hz), 5.73-5.83 (1H, m), 6.21 (1H, d, J = 1.5 Hz); ¹³C NMR (DMSO-d₆, 80 °C) § 13.0 (CH₃), 14.3 (CH₃), 41.1 (CH₂), 61.5 (CH₂), 64.8 (CH), 115.5 (C), 117.2 (CH), 118.5 (CH₂), 132.5 (CH), 151.9 (CO); HRMS m/z (M⁺, 23%) calcd for C₁₀H₁₅NO₂S 213.0824, obsd 213.0833; $(M^+ - allyl, 100\%)$ calcd for $C_7H_{10}NO_2S$ 172.0433, obsd 172.0458.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-5-methyl-4-thiazoline (2f'): colorless oil; ¹H NMR (CDCl₃) δ 1.73 (3H, d, J = 5.7Hz), 1.91 (3H, d, J = 1.3 Hz), 2.61 (2H, t, J = 6.6 Hz), 5.07–5.29 (2H, m), 5.37-5.96 (2H, m), 6.13-6.20 (1H, m), 6.56 (1H, q, J =5.7 Hz). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) & 13.6, 13.7 (CH₃), 25.3, 25.4 (2 peaks), 25.5 (CH₃), 40.8, 40.9, 42.0, 42.1 (CH₂), 64.5, 64.6, 65.7, 65.9 (CH), 82.8, 82.9, 83.0 (2 peaks) (CH), 115.6, 115.8, 116.7, 116.9 (CH), 118.1, 118.3 (C), 119.3, 119.4, 119.5, 119.7 (CH₂), 131.6, 131.7, 131.8, 131.9 (CH), 149.5 (2 peaks), 149.6 (CO); HRMS m/z (M⁺, 37%) calcd for C₁₀H₁₄ClNO₂S 247.0431, obsd 247.0428; $(M^+ - allyl, 100\%)$ calcd for $C_7H_9CINO_2S$ 206.0043, obsd 206.0071.

2-Allyl-3-(ethoxycarbonyl)-4,5-dimethyl-4-thiazoline (2g): colorless oil; ¹H NMR (DMSO-d₆, 80 °C) δ 1.22 (3H, t, J = 7.3 Hz), 1.82 (3H, s), 1.98 (3H, s), 2.40–2.43 (2H, m), 4.12 (2H, q, J = 7.3 Hz), 5.05 (1H, bs), 5.07–5.09 (1H, m), 5.49 (1H, t, J =5.9 Hz), 5.67-5.78 (1H, m); ¹³C NMR (DMSO-d₆, 80 °C) δ 12.8 (CH₃), 13.6 (CH₃), 14.2 (CH₃), 41.5 (CH₂), 61.3 (CH₂), 64.1 (CH), 113.1 (C), 118.0 (CH), 124.6 (C), 132.8 (CH), 153.2 (CO); HRMS m/z (M⁺, 28%) calcd for C₁₁H₁₇NO₂S 227.0980, obsd 227.0987; $(M^+ - allyl, 100\%)$ calcd for C₈H₁₂NO₂S 186.0588, obsd 186.0603.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-4,5-dimethyl-4-thiazoline (2g'): colorless oil; ¹H NMR (CDCl₃) δ 1.83 (3H, d, J = 5.7 Hz), 1.83 (3H, s), 2.06 (3H, s), 2.49 (2H, t, J = 6.6 Hz), 5.03– 5.20 (2H, m), 5.38–5.93 (2H, m), 6.58 (1H, q, J = 5.7 Hz). The ¹⁸C NMR spectrum was recorded on a mixture of two conform-

0

73

0

87

81

86

88

91 23 85

52

92

82

5**f**

5**f**

5g

5g

5h

5h

5i

5i′

5j

5j′

5k

5k'

5**k**″

ers: ¹³C NMR (CDCl₃) δ 13.3 (CH₃), 13.8 (CH₃), 25.3, 25.4 (CH₃), 41.8 (CH₂), 63.7 (CH), 82.8 (CH), 114.1, 114.7 (C), 118.8, 118.9 (CH₂), 123.7, 124.7 (C), 132.1 (2 peaks) (CH), 150.3 (CO); HRMS m/z (M⁺, 35%) calcd for C₁₁H₁₆ClNO₂S 261.0591, obsd 261.0599; (M⁺ - allyl, 100%) calcd for C₃H₁₁ClNO₂S 220.0200, obsd 220.0203.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-4-oxazoline (2h'): colorless oil; ¹H NMR (CDCl₃) δ 1.83 (3H, d, J = 5.9 Hz), 2.57–2.67 (2H, m), 5.11–5.27 (2H, m), 5.62–5.98 (2H, m), 6.16–6.23 (2H, m), 6.58 (1H, q, J = 5.9 Hz). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 25.1, 25.2, 25.3, 25.4 (CH₃), 37.6, 37.7, 38.8 (CH₂), 82.7 (CH), 91.1 (2 peaks), 91.7, 91.9 (CH), 107.6, 108.0 (CH), 119.4, 119.6, 119.8 (CH₂), 130.4, 130.5 (2 peaks) (CH), 133.1, 133.7 (CH), 149.5 (CO); HRMS m/z (M⁺, 38%) calcd for C₉H₁₂ClNO₃ 217.0505, obsd 217.0510; (M⁺ – allyl, 100%) calcd for C₉H₂ClNO₃ 176.0113, obsd 176.0103.

2-Allyl-1,3-bis(ethoxycarbonyl)benzimidazoline (5a): colorless plates from isopropyl ether-hexane; mp 73–73.5 °C. ¹H NMR (DMSO- d_6 , 80 °C) δ 1.31 (6H, t, J = 7.3 Hz), 2.67 (2H, dd, J = 3.9 Hz, 7.3 Hz), 4.27 (4H, q, J = 7.3 Hz), 4.94–4.97 (1H, m), 5.01–5.06 (1H, m), 5.53–5.64 (1H, m), 6.10 (1H, t, J = 3.9 Hz), 6.95–6.99 (2H, m), 7.50–7.52 (2H, m). ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.2 (2CH₃), 37.6 (CH₂), 61.9 (2CH₂), 74.5 (CH), 114.0 (2CH), 119.3 (CH₂), 123.2 (2CH), 130.7 (CH), 132.2 (2C), 150.8 (2CO). Anal. Calcd for C₁₆H₂₀N₂O₄: C, 63.14; H, 6.62; N, 9.21. Found: C, 63.29; H, 6.81; N, 9.27.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]benzimidazoline (5a'): colorless plates from isopropyl ether-ethyl acetate; mp 156-157 °C; ¹H NMR (CDCl₃) δ 1.93 (6H, d, J = 5.9 Hz), 2.68-2.81 (2H, m), 4.98-5.20 (2H, m), 5.40-5.80 (1H, m), 6.24 (1H, bs), 6.70 (2H, q, J = 5.9 Hz), 7.02-7.11 (2H, m), 7.35-7.77 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of three conformers: ¹³C NMR (CDCl₃) δ 25.3, 25.5 (2CH₃), 37.7, 38.8 (CH₂), 74.5, 75.0 (CH), 82.8 (2CH), 114.6, 114.9, 115.1 (2CH), 121.0 (CH₂), 124.3, 124.5, 124.6 (2CH), 129.2 (CH), 131.8, 132.2 (2C), 147.8, 149.3 (2CO). Anal. Calcd for C₁₆H₁₈Cl₂N₂O₄: C, 51.49; H, 4.86; N, 7.51. Found: C, 51.49; H, 4.89; N, 7.52.

2-Allyl-1,3-bis(ethoxycarbonyl)-5-methylbenzimidazoline (5b): colorless needles from isopropyl ether-hexane; mp 72.5-73 °C; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.30 (3H, t, J = 7.0 Hz), 1.31 (3H, t, J = 7.0 Hz), 2.26 (3H, s), 2.67 (2H, dd, J = 3.9 Hz, 7.3 Hz), 4.26 (2H, q, J = 7.0 Hz), 4.27 (2H, q, J = 7.0 Hz), 4.94– 4.97 (1H, m), 5.00–5.05 (1H, m), 5.53–5.63 (1H, m), 6.08 (1H, t, J = 3.9 Hz), 6.78 (1H, d, J = 8.8 Hz), 7.36 (1H, s), 7.37 (1H, d, J = 8.8 Hz); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.3 (2CH₃), 20.9 (CH₃), 37.6 (CH₂), 61.8 (CH₂), 61.9 (CH₂), 74.6 (CH), 113.7 (CH), 114.8 (CH), 119.3 (CH₂), 123.4 (CH), 130.0 (C), 130.7 (CH), 132.3 (C), 132.4 (C), 150.8 (2CO). Anal. Calcd for C₁₇H₂₂N₂O₄; C, 64.13; H, 6.97; N, 8.80. Found: C, 64.41; H, 6.95; N, 8.80.

2-Allyl-1,3-bis(ethoxycarbonyl)-5,6-dimethylbenzimidazoline (5c): colorless needles from ethanol; mp 72.5–73 °C; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.30 (6H, t, J = 7.0 Hz), 2.17 (6H, s), 2.66 (2H, dd, J = 3.9 Hz, 7.3 Hz), 4.25 (4H, q, J = 7.0 Hz), 4.94– 4.97 (1H, m), 4.99–5.04 (1H, m), 5.52–5.62 (1H, m), 6.05 (1H, t, J = 3.9 Hz), 7.31 (2H, s); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.3 (2CH₃), 19.3 (2CH₃), 37.6 (CH₂), 61.7 (2CH₂), 74.5 (CH), 115.3 (2CH), 119.2 (CH₂), 130.1 (2C), 130.5 (2C), 130.8 (CH), 150.8 (2CO). Anal. Calcd for C₁₈H₂₄N₂O₄: C, 65.04; H, 7.28; N, 8.43. Found: C, 65.30; H, 7.33; N, 8.51.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-5,6-dimethylbenzimidazoline (5c'): colorless needles from ethanol; mp 168– 169 °C; ¹H NMR (CDCl₃) δ 1.92 (6H, d, J = 5.7 Hz), 2.23 (6H, s), 2.73 (2H, bs), 4.94–5.18 (2H, m), 5.38–5.76 (1H, m), 6.16 (1H, bs), 6.69 (2H, q, J = 5.7 Hz), 7.16–7.57 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 19.9, 20.2 (2CH₃), 25.3, 25.5 (2CH₃), 37.7, 38.8 (CH₂), 74.4, 74.6, 74.8, 75.0 (CH), 82.6, 82.8, 83.2 (2CH), 115.8, 115.9, 116.2, 116.3 (2CH), 120.3, 120.8 (CH₂), 128.6, 129.0 (2C), 129.3, 129.6, 129.7 (CH), 132.3, 132.7, 132.8 (2C), 147.8, 149.1 (2CO). Anal. Calcd for C₁₈H₂₂Cl₂N₂O₄: C, 53.87; H, 5.53; N, 6.98. Found: C, 53.84; H, 5.55; N, 7.05.

2-Allyl-1,3-bis(ethoxycarbonyl)-5-methoxybenzimidazoline (5d): colorless, viscous oil; ¹H NMR (DMSO- d_{θ} , 80 °C) δ 1.30 (3H, t, J = 7.0 Hz), 1.31 (3H, t, J = 7.0 Hz), 2.67 (2H, dd, J = 3.7 Hz, 7.3 Hz), 3.72 (3H, s), 4.25 (2H, q, J = 7.0 Hz), 4.26 (2H, q, J = 7.0 Hz), 4.95–4.98 (1H, m), 5.01–5.06 (1H, m), 5.54– 5.64 (1H, m), 6.08 (1H, t, J = 3.7 Hz), 6.54 (1H, dd, J = 2.4 Hz, 8.3 Hz), 7.15 (1H, bs), 7.38 (1H, d, J = 8.3 Hz); ¹³C NMR (DMSO d_6 , 80 °C) δ 14.2 (CH₃), 14.3 (CH₃), 37.6 (CH₂), 55.6 (CH₃), 61.7 (CH₂), 62.0 (CH₂), 74.9 (CH), 101.9 (CH), 107.3 (CH), 114.3 (CH), 119.3 (CH₂), 125.9 (C), 130.7 (CH), 133.3 (C), 150.7 (CO), 150.8 (CO), 156.0 (C); HRMS m/z (M⁺, 29%) calcd for C₁₇H₂₂N₂O₅ 334.1527, obsd 334.1527; (M⁺-allyl, 100%) calcd for C₁₄H₁₇N₂O₅ 293.1136, obsd 293.1136.

2-Allyl-5-chloro-1,3-bis(ethoxycarbonyl)benzimidazoline (5e): colorless plates from hexane; mp 80.5–81 °C; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.31 (3H, t, J = 7.0 Hz), 1.32 (3H, t, J = 7.0 Hz), 2.70 (2H, dd, J = 3.4 Hz, 7.3 Hz), 4.27 (2H, q, J = 7.0 Hz), 4.30 (2H, q, J = 7.0 Hz), 4.97–5.01 (1H, m), 5.02–5.07 (1H, m), 5.54–5.64 (1H, m), 6.13 (1H, t, J = 3.4 Hz), 7.01 (1H, dd, J = 2.0 Hz, 8.3 Hz), 7.46 (1H, d, J = 8.3 Hz), 7.48 (1H, bs); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.2 (2CH₃), 37.5 (CH₂), 62.3 (CH₂), 75.3 (CH), 113.8 (CH), 114.7 (CH), 119.7 (CH₂), 122.7 (CH), 127.0 (C), 130.4 (CH), 131.5 (C), 133.7 (C), 150.6 (CO), 150.7 (CO). Anal. Calcd for C₁₆H₁₉ClN₂O₄: C, 56.72; H, 5.65; N, 8.27. Found: C, 56.77; H, 5.67; N, 8.32.

2-Allyl-5-chloro-1,3-bis[(1-chloroethoxy)carbonyl]benzimidazoline (5e'): colorless plates from ethanol; mp 123–123.5 °C; ¹H NMR (CDCl₃) δ 1.93 (6H, d, J = 5.7 Hz), 2.72–2.86 (2H, m), 4.97–5.20 (2H, m), 5.30–5.75 (1H, m), 6.17–6.30 (1H, m), 6.68 (2H, q, J = 5.7 Hz), 7.02 (1H, dd, J = 1.8 Hz, 8.4 Hz), 7.26–7.79 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of three conformers; ¹³C NMR (CDCl₃) δ 25.2, 25.3, 25.4 (2CH₃), 37.6, 38.6 (CH₂), 75.2, 75.6 (CH), 82.9, 83.1, 83.2 (2CH), 115.0 (2 peaks) (CH), 115.4, 115.5, 115.7 (CH), 121.2 (2 peaks) (CH₂), 124.0, 124.2, 124.3 (CH), 128.4, 129.0 (CH), 129.5, 129.7, 129.8 (C), 130.6, 131.1, 131.8 (C), 133.0, 133.4 (C), 147.6, 148.9, 149.0 (2CO). Anal. Calcd for C₁₆H₁₇Cl₃N₂O₄: C, 47.14; H, 4.20; N, 6.87. Found: C, 46.88; H, 4.28; N, 6.88.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-5-(methoxycarbonyl)benzimidazoline (5f'): colorless needles from isopropyl ether; mp 106–107 °C; ¹H NMR (CDCl₃) δ 1.95 (6H, d, J = 5.9 Hz), 2.72–2.86 (2H, m), 3.90 (3H, s), 4.98–5.20 (2H, m), 5.38–5.70 (1H, m), 6.26 (1H, bs), 6.70 (2H, q, J = 5.9 Hz), 7.82 (1H, bs), 7.84–8.36 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 25.2, 25.3, 25.4 (2CH₃), 37.6, 38.6, 38.7 (CH₂), 52.2 (CH₃), 75.4, 75.7 (CH), 82.8, 82.9, 83.3 (2CH), 114.0, 114.1, 114.3 (2 peaks) (CH), 115.4, 116.0 (CH), 121.1, 121.6 (CH₂), 126.1, 126.2, 126.5 (C), 127.0, 127.3 (CH), 128.6, 129.0 (CH), 131.0, 132.1, 132.4 (C), 134.6, 135.8, 136.4 (C), 147.8, 149.0 (2CO), 166.3 (CO). Anal. Calcd for C₁₈H₂₀Cl₂N₂O₆: C, 50.22; H, 4.69; N, 6.51. Found: C, 50.23; H, 4.58; N, 6.40.

2-Allyl-1,3-bis[(1-chloroethoxy)carbonyl]-5-nitrobenzimidazoline (5g'): pale yellow granules from ethanol; mp 88–90 °C; ¹H NMR (CDCl₃) δ 1.96 (6H, d, J = 5.9 Hz), 2.78–2.92 (2H, m), 5.02–5.25 (2H, m), 5.38–5.72 (1H, m), 6.22–6.34 (1H, m), 6.72 (2H, q, J = 5.9 Hz), 8.03 (1H, dd, J = 2.0 Hz, 8.8 Hz), 7.90–8.59 (2H, m). The ¹³C NMR spectrum was recorded on a mixture of three conformers: ¹³C NMR (CDCl₃) δ 25.2, 25.4 (2CH₃), 37.5, 38.6 (CH₂), 76.0, 76.1 (CH), 82.9, 83.1, 83.5 (2CH), 109.8, 109.9, 110.2 (CH), 113.6, 113.8, 114.1 (CH), 121.0, 121.3 (CH), 121.7, 122.2, 122.6 (CH₂), 128.1, 128.5 (CH), 131.6, 132.8 (C), 137.3, 137.5 (C), 144.2, 144.4 (C), 147.8, 148.6 (2CO). Anal. Calcd for C₁₆H₁₇Cl₂N₃O₆: C, 45.94; H, 4.09; N, 10.04. Found: C, 45.56; H, 4.03; N, 9.93.

2-Ally1-3-(ethoxycarbonyl)benzothiazoline (5h): colorless oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.30 (3H, t, J = 6.8 Hz), 2.55–2.57 (2H, m), 4.26 (2H, q, J = 6.8 Hz), 5.04–5.11 (2H, m), 5.69–5.78 (1H, m), 5.84 (1H, t, J = 6.1 Hz), 6.97–7.01 (1H, m), 7.06–7.10 (1H, m), 7.23 (1H, dd, J = 1.5 Hz, 7.5 Hz), 7.61 (1H, dd, J = 1.0 Hz, 7.3 Hz); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.2 (CH₃), 41.7 (CH₂), 62.0 (CH₂), 64.8 (CH), 117.2 (CH), 118.8 (CH₂), 122.4 (CH), 124.2 (CH), 125.1 (CH), 128.5 (C), 132.3 (CH), 137.5 (C), 152.1 (CO); HRMS m/z (M⁺, 15%) calcd for C₁₀H₁₀NO₂S 208.0429, obsd 208.0406.

2-Allyl-3-[(1-chloroethoxy)carbony]]benzothiazoline (5h'): colorless, viscous oil; ¹H NMR (CDCl₃) δ 1.90 (3H, d, J =5.7 Hz), 2.50–2.69 (2H, m), 5.06–5.23 (2H, m), 5.54–5.94 (2H, m), 6.69 (1H, q, J = 5.7 Hz), 6.98–7.23 (3H, m), 7.74 (1H, bs). The ¹³C NMR spectrum was recorded on a mixture of four conformers: 13 C NMR (CDCl₃) δ 25.3, 25.4 (CH₃), 4.15, 42.4 (CH₂), 65.0, 66.1 (CH), 82.9 (CH), 117.8 (CH), 119.6, 119.9 (CH₂), 122.5 (CH), 124.9, 125.0, 125.4 (2 peaks) (2CH), 128.5 (C), 131.6, 131.8 (CH), 136.9, 137.1 (C), 149.3, 149.6 (CO); HRMS m/z (M⁺, 24%) calcd for C₁₃H₁₄ClNO₂S 283.0431, obsd 283.0421; (M⁺ – allyl, 100%) calcd for C₁₀H₉ClNO₂S 242.0043, obsd 242.0070.

2-Allyl-3-(ethoxycarbonyl)-6-methoxybenzothiazoline (5i): colorless, viscous oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.28 (3H, t, J = 6.8 Hz), 2.52–2.56 (2H, m), 3.72 (3H, s), 4.23 (2H, q, J = 6.8 Hz), 5.05–5.06 (1H, m), 5.07–5.11 (1H, m), 5.67–5.77 (1H, m), 5.82 (1H, t, J = 6.1 Hz), 6.64 (1H, dd, J = 2.5 Hz, 8.8 Hz), 6.86 (1H, d, J = 2.5 Hz), 7.49 (1H, d, J = 8.8 Hz). ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.2 (CH₃), 41.7 (CH₂), 55.6 (CH₃), 61.9 (CH₂), 65.3 (CH), 108.6 (CH), 110.6 (CH), 117.9 (CH), 118.7 (CH₂), 130.1 (C), 131.1 (C), 132.4 (CH), 152.1 (CO), 156.5 (C); HRMS m/z (M⁺, allyl, 100%) calcd for C₁₄H₁₇NO₃S 238.0538, obsd 238.0553.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-6-methoxybenzothiazoline (5i'): colorless, viscous oil; ¹H NMR (CDCl₃) δ 1.89 (3H, d, J = 5.7 Hz), 2.50–2.68 (2H, m), 3.77 (3H, s), 5.06–5.23 (2H, m), 5.56–5.93 (2H, m), 6.56–6.75 (3H, m), 7.70 (1H, bs). The ¹³C NMR spectrum was recorded on a mixture of three conformers: ¹³C NMR (CDCl₃) δ 25.4 (CH₃), 41.4, 42.4 (CH₂), 55.7 (CH₃), 65.3, 66.6 (CH), 82.7, 82.9, 83.5 (CH), 108.7 (CH), 110.3, 110.4 (CH), 118.3 (CH), 119.6, 119.9 (CH₂), 130.0 (C), 130.7 (C), 131.7, 131.8 (CH), 149.3, 150.6 (CO), 157.2 (2 peaks) (C); HRMS *m/z* (M⁺, 36%) calcd for C₁₄H₁₈CINO₃S 313.0540, obsd 313.0545; (M⁺ – allyl, 100%) calcd for C₁₁H₁₁CINO₃S 272.0148, obsd 272.0151.

2-Allyl-3-(ethoxycarbonyl)-6-nitrobenzothiazoline (5j): pale yellow, viscous oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.33 (3H, t, J = 7.0 Hz), 2.60–2.64 (2H, m), 4.31 (2H, q, J = 7.0 Hz), 5.07– 5.14 (2H, m), 5.68–5.79 (1H, m), 6.00 (1H, t, J = 4.9 Hz), 7.79 (1H, d, J = 9.3 Hz), 7.98 (1H, dd, J = 2.5 Hz, 9.3 Hz), 8.13 (1H, d, J = 2.4 Hz); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.0 (CH₃), 41.7 (CH₂), 62.8 (CH₂), 66.1 (CH), 116.0 (CH), 117.5 (CH), 119.5 (CH₂), 121.8 (CH), 131.0 (C), 131.6 (CH), 143.4 (C), 143.7 (C), 151.6 (CO); HRMS m/z (M⁺, 13%) calcd for C₁₃H₁₄N₂O₄S 294.0672, obsd 294.0670; (M⁺ – allyl, 100%) calcd for C₁₀H₉N₂O₄S 253.0264, obsd 253.0272.

2-Allyl-3-[(1-chloroethoxy)carbonyl]-6-nitrobenzothiazoline (5j'): pale yellow needles from isopropyl ether; mp 130– 131 °C; ¹H NMR (CDCl₃) δ 1.93 (3H, d, J = 5.7 Hz), 2.54–2.73 (2H, m), 5.10–5.28 (2H, m), 5.62–5.95 (2H, m), 6.69 (1H, q, J =5.7 Hz), 7.96–8.11 (3H, m). The ¹³C NMR spectrum was recorded on a mixture of two conformers: ¹³C NMR (CDCl₃) δ 25.2, 25.3 (CH₃), 42.4 (CH₂), 66.4 (CH), 83.2 (CH), 116.6, 116.9 (CH), 117.7, 117.8 (CH), 120.7, 120.9 (CH₂), 122.0 (2 peaks) (CH), 130.5, 130.6 (CH), 130.9 (C), 142.7 (C), 142.8 (C), 144.7 (2 peaks) (C), 149.3, 149.5 (CO). Anal. Calcd for C₁₃H₁₃ClN₂O₂S: C, 47.49; H, 3.98; N, 8.52. Found: C, 47.62; H, 3.83; N, 8.32.

2-Allyl-3-(ethoxycarbonyl)benzoxazoline (5k): colorless, viscous oil; ¹H NMR (DMSO- d_6 , 80 °C) δ 1.31 (3H, t, J = 7.0 Hz), 2.65–2.68 (2H, m), 4.26 (2H, q, J = 7.0 Hz), 5.09 (1H, dd, J = 2.0 Hz, 10.2 Hz), 5.15 (1H, dd, J = 2.0 Hz, 17.6 Hz), 5.69–5.80 (1H, m), 6.22 (1H, t, J = 4.2 Hz), 6.80–6.92 (3H, m), 7.37 (1H, d, J = 7.8 Hz); ¹³C NMR (DMSO- d_6 , 80 °C) δ 14.1 (CH₃), 38.4 (CH₂), 61.9 (CH₂), 93.2 (CH), 108.4 (CH), 113.6 (CH), 119.3 (CH₂), 121.0 (CH), 123.4 (CH), 129.4 (C), 130.7 (CH), 150.1 (C), 150.7 (CO); HRMS m/z (M⁺, 26%) calcd for C₁₀H₁₆NO₃ 192.0658, obsd 192.0656.

2-Ally1-3-[(1-chloroethoxy)carbonyl]benzoxazoline (5k'): colorless, viscous oil; ¹H NMR (CDCl₃) δ 1.90 (3H, d, J = 5.9 Hz), 2.67–2.79 (2H, m), 5.06–5.29 (2H, m), 5.58–5.96 (1H, m), 6.21 (1H, t, J = 3.6 Hz), 6.58–6.88 (4H, m), 7.24–7.66 (1H, m). The ¹³C NMR spectrum was recorded on a mixture of four conformers: ¹³C NMR (CDCl₃) δ 25.2, 25.4 (CH₃), 38.3, 39.5 (2 peaks) (CH₂), 82.5, 82.7, 82.9 (2 peaks) (CH), 93.2, 93.3, 93.9 (2 peaks) (CH₂), 108.7, 109.3 (CH), 114.4, 114.5, 114.7 (CH), 120.0, 120.3 (CH₂), 121.2, 121.5 (CH), 124.5 (CH), 127.9, 128.8 (C), 129.8, 130.0 (CH), 147.7, 147.9, 148.9 (C), 150.3, 150.5 (CO); HRMS m/z (M⁺, 40%) calcd for C₁₃H₁₄ClNO₃ 267.0661, obsd 267.0671; (M⁺ – allyl, 100%) calcd for C₁₀H₉ClNO₃ 226.0270, obsd 226.0270.

2-Allyl-3-[(2,2,2-trichloroethoxy)carbonyl]benzoxazoline (5k"): colorless, viscous oil; ¹H NMR (DMSO-d₆, 80 °C) δ 2.73-2.76 (2H, m), 4.98-5.20 (4H, m), 5.71-5.81 (1H, m), 6.31 (1H, t, J = 4.1 Hz), 6.86–6.99 (3H, m), 7.47 (1H, dd, J = 1.0 Hz, 7.8 Hz); ¹³C NMR (DMSO- d_{6} , 80 °C) δ 38.2 (CH₂), 74.7 (CH₂), 93.4 (CH), 95.3 (CCl₃), 108.8 (CH), 113.9 (CH), 119.7 (CH₂), 121.2 (CH), 124.3 (CH), 128.6 (C), 130.3 (CH), 148.8 (C), 150.1 (CO); HRMS m/z (M⁺, 40%) calcd for C₁₃H₁₂Cl₃NO₃ 334.9883, obsd 334.9900; (M⁺ – allyl, 100%) calcd for C₁₀H₇Cl₃NO₃ 293.9489, obsd 293.9478.

Typical Procedure for the Aromatization of 2. Compound 2a' (3 mmol), potassium ferricyanide (18 mmol), and KOH (9 mmol) were dissolved in dioxane (70 mL)-H₂O (20 mL) solution, and the mixture was allowed to stand at 100 °C for 1 h. After the mixture cooled, an aqueous solution (100 mL) of 0.5 N KOH was added, and the mixture was extracted with CH₂Cl₂ (60 mL \times 3). The aqueous layer was further extracted with CH₂Cl₂ (60 mL \times 3) by salting-out. The salting-out was crucial for the isolation of the products in all the cases. The CH₂Cl₂ layers were combined, dried over MgSO₄, and evaporated. The residue was chromatographed on alumina to give 6a.

2-Allylimidazole (6a). All the physical and spectral data were identical to literature values.²³

2-Allyl-4-methylimidazole (6b): colorless oil; ¹H NMR (CDCl₃) δ 2.21 (3H, d, J = 1.0 Hz), 3.46 (2H, dt, J = 1.5 Hz, 6.8 Hz), 5.10 (1H, d, J = 1.5 Hz), 5.14 (1H, dd, J = 4.5 Hz, 8.8 Hz), 5.92–6.02 (1H, m), 6.63 (1H, s), 8.96 (1H, bs); ¹³C NMR (CDCl₃) δ 11.5 (CH₃), 33.1 (CH₂), 117.3 (CH), 117.6 (CH₂), 132.1 (C), 133.7 (CH), 145.5 (C); HRMS m/z (M⁺) calcd for C₇H₁₀N₂ 122.0841, obsd 122.0840.

2-Allyl-4,5-dimethylimidazole (6c): colorless needles from isopropyl ether; mp 128–130 °C; ¹H NMR (CDCl₃) δ 2.12 (6H, s), 3.43 (2H, dd, J = 1.5 Hz, 6.8 Hz), 5.12–5.18 (2H, m), 5.90–6.00 (1H, m), 6.84 (1H, bs); ¹³C NMR (CDCl₃) δ 10.6 (2CH₃), 33.2 (CH₂), 117.8 (CH₂), 126.2 (2C), 133.7 (CH), 143.4 (C). Anal. Calcd for C₈H₁₂N₂: C, 70.55; H, 8.88; N, 20.57. Found: C, 70.48; H, 9.05; N, 20.54.

2-Allyl-5-methylthiazole (6f): colorless oil; ¹H NMR (CDCl₃) δ 2.43 (3H, d, J = 1.0 Hz), 3.72 (2H, d, J = 6.8 Hz), 5.20 (1H, dd, J = 1.5 Hz, 9.8 Hz), 5.25 (1H, dd, J = 1.5 Hz, 17.1 Hz), 5.98–6.08 (1H, m), 7.34 (1H, d, J = 1.0 Hz); ¹³C NMR (CDCl₃) δ 12.0 (CH₃), 37.8 (CH₂), 118.0 (CH₂), 133.4 (C), 134.1 (CH), 140.0 (CH), 167.6 (C); HRMS m/z (M⁺) calcd for C₇H₉NS 139.0456, obsd 139.0463.

2-Allylbenzothiazole (7h). The literature¹⁹ reported only a low-resolution ¹H NMR spectrum of 7h, which was similar to our data; colorless oil; ¹H NMR (CDCl₃) δ 3.89 (2H, dt, J = 1.5 Hz, 6.8 Hz), 5.28 (1H, dd, J = 1.5 Hz, 10.3 Hz), 5.34 (1H, dd, J = 1.5Hz, 17.1 Hz), 6.07–6.17 (1H, m), 7.33–7.37 (1H, m), 7.43–7.48 (1H, m), 7.84 (1H, d, J = 8.3 Hz), 7.99 (1H, d, J = 8.3 Hz); ¹³C NMR (CDCl₃) δ 38.6 (CH₂), 119.0 (CH₂), 121.5 (CH), 122.6 (CH), 124.9 (CH), 126.0 (CH), 133.1 (CH), 135.3 (C), 153.1 (C), 170.2 (C); HRMS m/z (M⁺) calcd for C₁₀H₉NS 175.0454, obsd 175.0452. Compound 7h was slowly isomerized at rt to 2-(1-propenyl)benzothiazole (8h).

2-(1-propenyl)benzothiazole (8h): colorless oil; ¹H NMR (CDCl₃) δ 1.99 (3H, s), 6.72–6.75 (2H, m), 7.31–7.35 (1H, m), 7.41–7.45 (1H, m), 7.80 (1H, d, J = 7.8 Hz), 7.95 (1H, d, J = 8.3 Hz); ¹³C NMR (CDCl₃) δ 18.7 (CH₃), 121.4 (CH), 122.8 (CH), 125.1 (CH), 126.0 (CH), 126.1 (CH), 134.0 (C), 137.0 (CH), 153.6 (C), 167.4 (C); HRMS m/z (M⁺) calcd for C₁₀H₉NS 175.0454, obsd 175.0459.

The Procedure for the Synthesis of 7a. The application of the aromatization conditions described above to benzimidazoline 5a' resulted in the formation of 2-(1-propenyl)benzimidazole (8a) as the sole product in 88% yield. The synthesis of 7a was carried out at rt with excess reagents. Compound 5a' (3 mmol), potassium ferricyanide (36 mmol), and KOH (48 mmol) were dissolved in dioxane (140 mL)-H₂O (50 mL) solution, and the mixture was allowed to stand at rt for 5 days. An aqueous solution (100 mL) of 1 N NaOH was added, and the mixture was extracted with CH₂Cl₂ (200 mL × 3). The organic layer was dried over MgSO₄ and evaporated. The residue was chromatographed on alumina to give 7a. All the physical and spectral data of 7a and 8a were identical to literature values.²⁴

Isolation of 2-Allylbenzothiazoline (9h): When 5h' was treated with K_2CO_3 instead of KOH, intermediate 9h was obtained. Thiazoline 5h' (0.5 mmol), potassium ferricyanide (1.5 mmol), and K_2CO_3 (1.0 mmol) were dissolved in dioxane (6 mL)– H_2O (2 mL) solution and the mixture was allowed to stand under reflux for 3 h. After the mixture cooled, 2 mL of 1 N KOH solution was added, and the mixture was extracted with CH_2Cl_2 (20 mL × 3). The organic layer was dried over MgSO₄ and evaporated to leave a residue, which was chromatographed on silica gel to give 7h (29%) and 9h (45%).

2-Allylbenzothiazoline (9h): colorless oil; ¹H NMR (CDCl₃) δ 2.56–2.66 (2H, m), 4.20 (1H, bs), 5.16–5.28 (3H, m), 5.76–5.87 (1H, m), 6.64 (1H, d, J = 7.8 Hz), 6.71–6.75 (1H, m), 6.88–6.92 (1H, m), 7.06 (1H, dd, J = 1.5 Hz, 7.3 Hz); ¹³C NMR (CDCl₃) δ 42.9 (CH₂), 67.0 (CH), 110.6 (CH), 119.0 (CH₂), 120.7 (CH), 122.0

(CH), 125.2 (CH), 126.9 (C), 133.3 (CH), 146.2 (C); HRMS m/z (M⁺, 11%) calcd for C₁₀H₁₁NS 177.0595, obsd 177.0602; (M⁺ – allyl, 100%) calcd for C₇H₆NS 136.0218, obsd 136.0206.

Supplementary Material Available: The ¹H and ¹³C NMR spectra for all the oily compounds (29 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.